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Abstract

Moisture content is one of the key controlled variables in drying processes. However, this variable cannot or is difficult to be

measured directly and it is often an inferred quantity based on experience. Therefore, there is a need to design a state observer

to estimate the moisture content on-line for the purpose of direct control of drying product quality.

A linear state space dynamic model is used to describe drying in continuous fluidized bed dryers. The estimation technique based

on Kalman filter design is used to provide state estimates for an optimal state feedback control system. The filter shows acceptable

performance in reducing the noises present in the system and in converging to the actual states from incorrect initial states. Also,

state feedback controller shows acceptable performance in tracking set points changes when using either actual states or estimated

ones.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Control of drying processes is concerned mainly with

maintenance of desired product moisture content by
manipulation of heating rate and solids feed flow rate

despite disturbances in the drying operation such as

changes in ambient air temperature, ambient air humid-

ity, and variations in feed supply and composition. The

lack of direct, on-line and reliable methods for sensing

product moisture content constitutes a major problem

in developing new control strategies for drying pro-

cesses. Direct control and on-line measurement of solids
moisture content would enable significant improvement

in dryer control.
0260-8774/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jfoodeng.2004.09.026

* Corresponding author. Present address: American University of

Sharjah, Dept. of Chem. Eng., P.O. Box 26666, Sharjah, UAE. Tel.:

+962 2 7201000; fax: +962 2 7095018.

E-mail address: nabilj@just.edu.jo (N.M. Abdel-Jabbar).

Downloaded from http://www.elearnica.ir
In general, it is difficult to make on-line measurement

of product moisture content. Moreover, suitable mois-

ture sensors are not available widely in drying plants be-

cause they are expensive and/or have low reliability and
often produce significant amounts of measurement noise

(Jumah, Mujumdar, & Raghavan, 1995). Therefore, the

moisture content of the dried product is often be in-

ferred from the temperature and humidity of the exhaust

gas. Several experimental investigations have produced

empirical correlations for the determination of material

moisture content (e.g., Agness & Isaacs, 1966; Alden,

Torkington, & Strutt, 1988; Harber, 1974). These meth-
ods are based on deriving correlations, which relate solid

moisture content to both exit air humidity and temper-

ature (wet and dry bulb temperatures) in order to infer

the value of particles moisture content. Nevertheless,

the resulted correlations are limited to the studied cases

and it is not applicable to other systems. In addition,

due to the weak correlation between the exit air
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Nomenclature

A matrix of the states of the process, n · n

B matrix of inputs of the process, n · m

C matrix of the outputs of the process, p · n

d disturbance vector, d · 1

e state error vector, n · 1

Is identity matrix of dimension s · s

KFB state feedback controller gain, –

L observer gain matrix, –

M average volume moisture content of statisti-

cal population of products in continuous pro-
cess, dry basis, kg/kg

Q process noise weighting matrix, nw · nw

R measurement noise weighting matrix, p · p

T outlet bed (solid) temperature, K

u manipulated inputs vector, m · 1
W process noise vector, nw · 1

x state vector, n · 1

x̂ estimated state vector, n · 1

ysp set point of controlled variable, p · 1

y controlled variable vector, p · 1

Greek symbols

k matrix eigenvalue, –
/ matrix of disturbances of the process, n · d

g measurement noise vector, p · 1

f coefficient matrix of the process noise, n · nw
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temperature and the product moisture content, using

indirect (inferential) control usually results in poor con-

trol of the drying process (Jumah et al., 1995).

Advanced control design methods such as state feed-

back controls, which use the states in their control laws

are designed under the assumption that all state vari-

ables are accessible for measurement. In practical appli-

cations, this assumption may not be realistic since it is
either impossible or too expensive to measure all the

state variables. In such cases, a state observer is needed

to provide ‘‘acceptable’’ estimates of the process states,

using only the available measurements, for use in imple-

mentation of a feedback control law.

Motivated by the above considerations, the state esti-

mation techniques should be used to estimate the

unmeasured state variables and to reduce the effect of
measurement and/or process noises. The most popular

estimation technique for a continuous process is Kal-

man filter. Since the publication of the classic papers

by Kalman (1960) and Kalman & Bucy (1961), the

application of the Kalman filter and its extended design

to chemical processes has received extensive study (e.g.,

Dimtratos, Georgakis, El-Aasser, & Klein, 1988; Ham-

ilton, Seborge, & Fisher, 1973; Seinfeld, 1970; Quin-
tero-Marmol, Luyben, & Georgakis, 1991; Tatiraju &

Soroush, 1997). In drying control, reliable sensors have

been constructed for direct measurement of material

moisture content, but they are restricted to a small class

of agricultural products such as grains (e.g. Eltigani &

Bakker-Arkema, 1987). Recently, Kiranoudis, Dimitra-

tos, Maroulis, & Marinos-Kouris (1993) designed hy-

brid extended Kalman filter that employs both
continuous and discrete time rules to estimate moisture

content in a batch dryer of food materials. A quite sat-

isfactory result for moisture estimation was obtained

from the comparison of filter estimation and a labora-

tory dryer.
The problem of designing control system for contin-

uous fluidized bed dryers was considered earlier by

Abdel-Jabar, Jumah, & Al-Haj Ali (2002a). A continu-

ous transfer functions model and equivalent state space

models were derived via system identification. The de-

rived models were used to develop model-based control

algorithms such as Internal Model Control (IMC) and

Model Predictive Control (MPC). Performance and
robustness properties of these controllers were analyzed.

However, it was assumed that the moisture content is

available as an output measured variable. Also, it was

assumed that process noises and measurement noises

are not present. As such, these assumptions limit the

applicability of the state feedback control algorithms

on real drying processes.

Therefore, the purpose of this study is to present a
methodology for on-line estimation of material moisture

content based on Kalman filter design. In addition,

closed-loop simulations are performed in order to eval-

uate the effectiveness of the state estimator in state feed-

back control.
2. Drying model

A rigorous nonlinear dynamic model for a continu-

ous fluidized bed dryer (FBD) has been developed ear-

lier by Abdel-Jabar, Jumah, & Al-Haj Ali (2002b).

The model was based on combining the drying kinetics

for diffusion-controlled systems and residence time den-

sity function with no adjustable parameters. Following

that, the model was utilized in performing step testing
to generate input–output dynamic data.

Then, the input–output data were used to derive re-

duced-order linear models for FBD via system identifi-

cation (Abdel-Jabar et al., 2002a). The derived

continuous transfer function model, which relates the
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product moisture content (M), and product temperature

(T) as controlled output variables to the solid flow rate

(Gs) and the inlet gas temperature (Tgi) as the manipu-

lated input variables, and to the inlet moisture content

(Mi) and inlet air humidity (Yi) as disturbance (load)

variables, is given as

M

T

" #
¼

0:934e�50s

8:22� 102sþ 1

�1:88� 10�3

2:31� 103sþ 1

�4:62� 102

1:38� 102sþ 1

7:52� 10�1

2:06� 102sþ 1

2
6664

3
7775 Gs

T gi

" #

þ

7:85� 10�2

8:7� 103sþ 1

7:59

1:99� 103sþ 1

�90

2:71� 102sþ 1

7:77� 102e�150s

1:95� 103sþ 1

2
6664

3
7775 M i

Y i

" #

ð1Þ

The above model has shown to be adequately represent-

ing the process dynamics. An equivalent state space

model was then obtained from the above continuous

transfer function model using the state space realization

routine available in MATLAB.
3. Observer design

The state estimator (observer) is based on Kalman fil-

ter design. In this filter, the process and measurement

noise are assumed to be white Gaussian with zero mean.

Also, this filter uses continuous-time models of dynam-

ics and observation. The mathematical formulation of

this estimator is well-known and therefore only a sum-
mary will be presented here. Consider a linear, time-

invariant, state space process model of the form

_x ¼ Axþ Buþ /dþ fw

y ¼ Cxþ g
ð2Þ

here x is n · 1 state vector, u is m · 1 manipulated inputs
vector, d is d · 1 disturbances vector, y is p · 1 outputs

vector, w is the nw · 1 process noise vector and g is

the p · 1 measurements noise vector. A, B, C, / and f
are constant matrices of appropriate dimensions. It is

assumed that w and g are white Gaussian noises with

zero means and have covariance matrices of Q (nw · nw)

and R (p · p), respectively. In practice, these covariance

matrices are taken to be diagonal positive definite, both
for convenience and for lack of information regarding

covariance.

Before proceeding in observer design, a very impor-

tant issue must be considered, which is the observability.

To be able to design an observer for a system, the system

has to be observable. A linear system is observable if the

observability matrix

N ¼ C CA CA2 � � � CAns�1
� �T ð3Þ
be of rank n. If the observability condition is not satis-

fied, this means that unobservable states are present.

To overcome this obstacle, state space realization can

be employed. Realization is defined as the removal of

unnecessary states without affecting the input/output

relation.
After checking system observability, Kalman filter

can be designed. This observer has the form of linear

observers (Åström & Wittenmark, 1990)

_̂x ¼ Ax̂þ Buþ /dþ Lðy� Cx̂Þ ð4Þ

where x̂ is the estimated state vector (n-vector).

The problem of designing this observer becomes

merely that of determining the observer gain matrix L,

such that the observer error dynamics defined by

_e ¼ ðA� LCÞeþ fw� Lg ð5Þ
where e ¼ x� x̂ is the n · 1 error vector, is asymptoti-

cally stable with sufficient speed of response (Ogata,

1997). The asymptotic stability and speed of response

of the error dynamics are determined by the eigenvalues
(k) of

Ac ¼ A� LC ð6Þ
such that they lie to the left of the imaginary axis. The

gain matrix can be selected in various ways. If the sys-

tem is observable and linear, it is theoretically possible

to place the eigenvalues of the matrix in Eq. (6) at any
desired location. This method is referred to as a pole

placement. Although this approach is a convenient way

of selecting the control gains, it may not always be sat-

isfactory, for several reasons. One reason is that a good

set of pole locations is not always obvious. Also, in any

system with more than one input, pole placement does

not yield a unique solution for the gain matrix. More-

over, the design that results when the poles are placed
at arbitrary locations may not be robust with respect

to variation of the loop gain.

To alleviate these deficiencies, an alternative ap-

proach based on quadratic optimization can be used.

In this approach, the dynamics of the observer is opti-

mized in a statistical sense to result in the well-known

Kalman filter. Referring to the above error dynamics

Eq. (5), let ew(t) be the estimation error induced by a
unit impulse process noise (w(t) = d(t)), and let eg(t) be

the estimation error induced by a unit impulse measure-

ment noise (g(t) = d(t)). Then a reasonable optimization

criterion would be a weighted sum of the ‘‘sizes’’ of ew
and eg. For the above process model, the following qua-

dratic performance index is selected (Kravaris, 1995):

J ¼
Z 1

0

ðeTwQew þ eTgRegÞdt ð7Þ

The solution of this optimization problem is given by

L ¼ PCTR�1 ð8Þ
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where P is a positive definite matrix that satisfies the

algebraic Riccati equation

APþ PAT � PCTR�1CPþ fQfT ¼ 0 ð9Þ
It should be noted that a general dynamic matrix Riccati

equation of the form

dP=dt ¼ APþ PAT � PCTR�1CPþ fQfT ð10Þ
can be obtained if the above optimization problem is

solved over a finite time instead of infinite time as given

in Eq. (7). However, we are interested here in the infinite

time horizon solution.

For the observer design, diagonal Q and R matrices
were assumed with each matrix having equal diagonal

elements such that (Hamilton et al., 1973);

Q ¼ qInw and R ¼ rIp ð11Þ
where Inw and Ip are identity matrices of dimensions

nw · nw and p · p, respectively. The matrices Q and R

must be chosen in order to achieve good filter perfor-

mance and tracking capabilities.

From the above, it is clear that for linear systems, the
gain L does not depend on the state estimates, and there-

fore, it can be computed off-line before the filter is imple-

mented and stored in the filter�s memory. Here, we will

consider a full-order state observer in which the order

of the state observer is the same as that of the system,

i.e., the state estimator observes all state variables of

the system.
Fig. 1. A block diagram representation of a general observer-state

feedback.
4. State feedback control design

The Kalman filter designed here generates estimates

for the unknown states and outputs. Thus, different ad-

vanced control strategies, which can take benefit from

the observer�s estimates, can be designed and imple-

mented with Kalman filter. One possible strategy is to
use state feedback controller with the following law

(Kravaris, 1995):

u ¼ Kspysp � KFBx̂ ð12Þ

where Ksp is chosen for unity steady-state gain between

ysp and y as follows:

Ksp ¼
�1

CðA� BKFBÞ�1
B

ð13Þ

here, KFB is a constant (or time-varying) gain matrix
that can be obtained by either pole placement or the

optimization of certain cost function. For the optimiza-

tion approach, the control is sought which gives the best

trade-off between performance and cost of control. A

standard form of the optimal control for state feedback

control design is to seek the control which minimizes the

value of a performance index JFB of the form (Kravaris,

1995)
JFB ¼ 0:5

Z 1

0

ðxTQFBxþ uTRFBuÞdt ð14Þ

QFB and RFB are weighting matrices and usually diago-
nal with unity elements. The solution of this optimiza-

tion problem is given by

KFB ¼ R�1
FBB

Tp ð15Þ
again PFB is a positive definite matrix that satisfies the

algebraic Riccati equation

ATPFB þ PFBA� PFBBR
�1
FBB

TPFB þQFB ¼ 0 ð16Þ
5. Observer-state feedback design

A block diagram representation of a general obser-

ver-state feedback is depicted in Fig. 1. The dynamics

of the observed-state feedback control system equations

(2), (5), (6) and (12) are combined to give the overall

closed-loop system

_x

_e

� �
¼

A� BKFB BKFB

0 A� LC

� �
x

e

� �

þ
BKsp / f 0

0 0 f �L

� � ysp

d

w

g

2
6664

3
7775

y ¼ C 0½ �
x

e

� �
þ g

ð17Þ

The above combined regulator–observer design is based

on the separation principle (Friedland, 1996), by which

control system is designed in two independent phases,

which are

1. Design a full state feedback for the subsystem

(A � BKFB) and
2. Design an observer for the subsystem (A � LC).

That is to design two separate subsystems and then

put them together such that the poles (eigenvalues) of
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the closed-loop system comprise the poles of the obser-

ver and the poles that would be present if full state feed-

back were implemented. In other word, the stability of

the resulting closed-loop system will be guaranteed by

designing stable state feedback and observer dynamics.

However, this separation property holds only when the
model of the plant used in implementing the observer

is a faithful model of the physical plant (Friedland,

1996).
Fig. 2. The effectiveness of the Kalman filter in providing state

estimates of the moisture content from noisy measurements.
6. Results and discussion

The state space model which was obtained from Eq.
(1) via state space realization comprises of fifteen state

variables (x), four inputs (manipulated and distur-

bances) (u lumped with d), and two outputs (y). It

should be noticed here that these states are not actual

states for the drying system. Rather, these states are just

artificial ones and their output mapping matrix C gives

the actual output variables y (M and T). To ensure the

observability of the system (Kalman, 1960), the minimal
realization function in MATLAB was employed to re-

move excess states. Here, it was found that three states

must be removed. As such, the drying state space model

has 12 states, 4 inputs, and 2 output variables with a

state matrix A of dimension (12 · 12), an input matrix

B lumped with / of size (12 · 4), and an output map ma-

trix C of size (2 · 12).

The systems simulated in this study are divided into
three types. The first system consists of Kalman filter

and the dryer model. The second one consists of state

feedback controller and the dryer model. The last one

consists of Kalman filter, state feedback controller and

the dryer model.

In this work, a full-order observer design is consid-

ered. The Kalman filter gain matrix L is uniquely deter-

mined by the solution of Eqs. (7)–(9), for the specified
values of Q and R matrices. Guassian noise sequences

with zero means and standard deviations of 0.3 were

used in all simulation runs. For all runs, q = r = 0.09 is
Table 1

Observer design parameters

L ¼

�1:7895 �2:9682
�0:4935 �0:7734
�0:6549 �1:0805
�0:3613 �0:5174
�0:0094 �0:0125
�0:0791 �0:0907
0:00210 0:00780
�0:3104 �0:3404
0:00190 0:00170
0:01180 0:17100
0:03960 0:03570
�0:0026 �0:6399

2
6666666666666666664

3
7777777777777777775

kðA� LCÞ ¼

�1:0003
�0:8944
�0:4306
�0:0674
�0:0166
�0:013
�0:0049
�0:0039
�0:0008
�0:0006
�0:0006
�0:0006

2
6666666666666666664

3
7777777777777777775
used in Eq. (11). Table 1 lists the observer gain matrix

with the associated observer poles (eigenvalues). It is no-

ticed that all computed observer eigenvalues are nega-

tive, and hence, the error dynamics of the observer is

asymptotically stable.

Simulation of the observer dynamics is performed in
order to evaluate the effectiveness of the observer with

respect to reducing the effect of noises in the system

and its ability to accurately estimate solid moisture con-

tent with incorrect initial state estimates. The effective-

ness of the Kalman filter in providing state estimates

of the moisture content from noisy measurements is

illustrated by Fig. 2. The plot indicates that the noise

level can be dramatically reduced. In addition, the state
estimates from the observer are very close to the actual

states and represent a considerable improvement over

the unfiltered values.
Fig. 3. Observer estimates for incorrect initial estimates.



Table 2

State feedback control design parameters

KFB ¼ 0 0 0:0011 0:0161 0 0:0240 0 0:2696 0 �0:3783 0:0002 0:4286
0 0 0:0001 �0:0006 0 �0:0011 0 �0:0121 0 0:0139 0:0001 �0:0234

� �

kFBðA� BKFBÞ ¼

�1:0003
�0:8459
�0:0674
�0:0322
�0:0167
�0:0133
�0:0048
�0:0037
�0:0005
�0:0006
�0:0006
�0:0006

2
6666666666666666664

3
7777777777777777775

Fig. 5. State feedback control response due to a set point change in

product moisture content.
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Fig. 3 depicts the effect of an inaccurate initial state

estimate on the performance of the observer. Clearly,

the outlet solid moisture content (M) estimate converges

to the actual values from an incorrect initial state esti-

mates above the true values. However, it can be seen

that the error dynamics response of the observer is

rather slow which is due to the conservative values of

the observer gain in order to ensure stability and robust-
ness (i.e., less sensitivity to modeling errors) characteris-

tics. A faster error dynamics response can be obtained

but at the expense of less stability and more sensitivity

to modeling errors.

Initially, a full state feedback controller, which uti-

lizes the actual states, is simulated with the dryer model.

The optimal feedback gain matrix KFB used in this work

is given in Table 2. The closed-loop time responses due
to setpoint step changes in the product temperature (T)

and moisture content (M) are shown respectively in

Figs. 4 and 5. Both responses are shown to be stable.
Fig. 4. State feedback control response due to a set point change in

product temperature.
However, the temperature response is rather faster than
the moisture one, where the later takes about 100min to

achieve steady state compared to 10min for the temper-

ature response.

Finally, a closed-loop simulation run is performed in

order to evaluate the effectiveness of using Kalman filter

in feedback control systems, that is, the combined regu-

lator–observer design. The state estimates produced by

Kalman filter are used in the multivariable control law
(Eq. 12) instead of the actual values. The dashed line

in Fig. 5 represents the closed-loop simulation of the

coupled regulator–observer system in the presence of

inaccurate initial state estimates using the gain matrix

KFB given in Table 2. Clearly, the performance of using

the observer in the state feedback control scheme

(dashed line) provides satisfactory control performance

for the moisture content control compared to the
closed-loop response using actual states (solid line).

Also, it should be noted here that the state feedback
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control of drying provides smooth setpoint tracking

capabilities with no overshoot compared to the IMC-

PID output feedback control performance reported in

Abdel-Jabar et al. (2002a).
7. Conclusions

Drying processes represent a difficult control prob-

lem, since the material moisture content can not be mea-

sured on-line using economical sensors and the available

measurements contain significant amounts of random

noise. To solve these problems a Kalman filter has been

designed. Performance studies show that Kalman filter
provides satisfactory estimates even in the presence of

significant noise levels, and inaccurate initial states fed

to the observer. In addition, state feedback controller

is designed. Closed-loop simulation runs show that the

state estimates calculated by Kalman filter can be used

efficiently in controlling outlet solid moisture content.
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